March 31 2025 10:57:37
Навигация
Последние статьи
· Крестовая гора в Литве
· Эволюция женщин от А...
· Как правильно растит...
· Весна - огород, дача...
· Русские летчики в ос...
Иерархия статей
Статьи » Науки - все » Платина - все о металле
Платина - все о металле

Поведение платины при металлургической переработке сульфидных платинусодержащих руд и концентратов


 

Основные технологические операции переработки медно-никелевых концентратов.

 

При обогащении сульфидных медно-никелевых руд получаются медный и никелевый концентраты, перерабатываемые по сложной технологической схеме (рис. 1).

 

Никелевый концентрат после агломерации или окатывания плавят в электротермических (реже отражательных) печах с получением штейна и шлака. Шлак на некоторых заводах после грануляции и измельчения подвергают флотации для извлечения взвешенных частиц штейна, содержащих платиновые металлы. Штейн, концентрирующий основную массу платиновых металлов, проходит операцию конвертирования на обеднительную электроплавку, и файнштейна, который медленно охлаждается, дробится, измельчается и флотируется с получением медного концентрата, перерабатываемого в медном производстве, и никелевого, направляемого на обжиг в печах кипящего слоя.

 

Платина - схема переработки сульфидных медно-никелевых руд

Рис. 1. Технологическая схема переработки сульфидных медно-никелевых руд.

 

При охлаждении файнштейна компоненты претерпевают кристаллизацию в следующей последовательности: первичные кристаллы сульфида меди → двойная эвтектика, состоящая из сульфидов меди и никеля, → тройная эвтектика, состоящая из сульфидов меди, никеля и медно-никелевого металлического сплава. Металлический сплав, выход которого на различных заводах составляет 8-15 %, коллектирует до 95% платиновых металлов, содержащихся в файнштейне. Поэтому на некоторых заводах металлическую фазу выделяют магнитной сепарацией и направляют на восстановительную плавку с получением анодов.

 

Полученную после обжига никелевого концентрата закись подвергают восстановительной плавке на аноды в дуговых электропечах. Аноды подвергают электрорафинированию; выпадающий на аноде шлам концентрирует основную массу платиновых металлов.

 

Платиновые металлы, находящиеся в медном концентрате, после обжига, отражательной плавки, конвертирования и огневого рафинирования концентрируются в медных анодах, после электрорафинирования переходят в медный шлам. Медный и никелевый шламы обогащают с получением концентратов, содержащих до 60% платиновых металлов. Эти концентраты направляют на аффинаж.

 

В последние годы для переработки медных и никелевых концентратов предложены высокоинтенсивные автогенные процессы: плавка в жидкой ванне, взвешенная плавка, кислородно-взвешенная плавка и др. Применяют также гидрометаллургическую переработку платинусодержащих сульфидных концентратов с использованием окислительного автоклавного выщелачивания, соляно- и сернокислое выщелачивание, хлорирование при контролируемом потенциале и другие процессы.

 

Таким образом, платиновые металлы в процессе пиро- и гидрометаллургической переработки подвергают воздействию окислителей при температурах до 1200-1300°С, действию кислот при высоких окислительных потенциалах среды, анодному растворению при значительных электроположительных потенциалах. Поэтому необходимо рассмотреть поведение этих металлов в различных процессах с целью создания условий для повышения извлечения их в принятых и проектируемых технологических схемах переработки платинусодержащих сульфидных медно-никелевых концентратов.

 

Физико-химические основы поведения платины при переработке сульфидного сырья

 

 

Пирометаллургические процессы.

 

При переработке сульфидных руд пирометаллургическими способами благородные металлы частично теряются с отвальными шлаками, пылями и газами. Для теоретической оценки возможности таких потерь и создания условий для их уменьшения большой интерес представляет зависимость свободных энергий образования оксидов и сульфидов благородных металлов от температур.

 

Таблица 9. Свободные энергии окисления сульфидов.

 

Реакция

Ур-е свободной энергии

ΔGТ, Дж/моль

ΔGТ, Дж/моль О2 при температуре, К

1173

1273

1573

PtS(тв)+2O2(г)=PtO2(тв)+SO2(г)

-228000+87.5•Т

-

-227

-214

PtS(тв)+2O2(г)=PtO2(г)+SO2(г)

-17600-7.5•Т

-26

-27

-29

 

 

Агломерация.

 

В процессе агломерации концентрат подвергается окускованию и частичной десульфурации при 1000-1100°С, что сопровождается процессами разложения высших сульфидов и окисления получившихся продуктов кислородом воздуха.

 

Электроплавка сульфидного никель-медного концентрата осуществляется в электропечи, куда поступает концентрат, содержащий в зависимости от месторождения от 20 до 150 г/т платиновых металлов. В шихту вместе с окатышами и агломератом добавляют оборотные продукты и, в зависимости от состава исходного сырья, известняк или песчаник. Температура расплава на границе с электродом достигает 1300-1400°С. Пустая порода ошлаковывается; шлак сливают, гранулируют. На некоторых предприятиях его подвергают измельчению и флотации с целью более полного извлечения благородных металлов. Содержание благородных металлов в шлаке в зависимости от режима плавки и состава концентрата колеблется от 0.3 до 1.0 г/т. Штейн концентрирует основную массу платиновых металлов. Содержание их в штейне колеблется в пределах 100-600 г/т.

 

Процесс плавки протекает в основном в восстановительном режиме, поэтому потери платиновых металлов в этом процессе определяются механическими потерями мелких корольков штейна, взвешенных в шлаковой фазе. Эти потери могут быть устранены флотацией шлаков с извлечением платиновых металлов в сульфидный концентрат. При этом извлечение платины может достигать более 99.0%.

 

Конвертирование. Полученный при электроплавке штейн подвергается конвертированию. Конвертирование, цель которого состоит в возможно более полном удалении сульфида железа из никель-медных штейнов, осуществляется при температуре около 1200°С. Процесс протекает в сульфидных расплавах, где активность платиновых металлов очень невелика. Поэтому в процессе конвертирования в шлаковую фазу в очень незначительных количествах переходит платина (<0.5%), палладий (<0.5%), родий (<1.0%), иридий (<1.0%). Более того, конвертные шлаки перерабатываются в обеднительных печах, поэтому общие потери благородных металлов при конвертировании сравнительно малы.

 

При обжиге никелевого концентрата в печах кипящего слоя процесс окисления протекает весьма интенсивно и поэтому сопровождается значительными потерями металлов. 

 

Восстановительная электроплавка закиси никеля на металлический никель не вызывает значительных потерь платиновых металлов. Механические потери их с пылями могут быть уменьшены в результате совершенствования системы пылеулавливания. Переход в шлаки не вызывает дополнительных потерь, так как шлаки в этом процессе являются оборотными продуктами.

 

Взвешенная плавка сульфидных материалов осуществляется в окислительной атмосфере при температуре около 1300°С.

 

Пирометаллургическая переработка медных концентратов, содержащих платиновые металлы, включая обжиг при 800-900°С, отражательную плавку, конвертирование и огневое рафинирование меди. В последние годы для переработки медных концентратов широкое применение получили автогенные процессы: взвешенная плавка и плавка в жидкой ванне.

 

Химические реакции и температурный режим обжига медных концентратов примерно те же, что при агломерации.

 

Гидрометаллургические процессы.

 

Платиновые металлы, содержащиеся в сульфидных медно-никелевых рудах, проходят через пирометаллургические операции, концентрируются в черновом металле и поступают на электролитическое рафинирование никелевых и медных анодов. Причем в зависимости от условий проведения этих операций большее или меньшее количество платиновых металлов может переходить в сборные или оборотные продукты, что в конце концов приводит к безвозвратным потерям.

 

Таблица 10. Формы нахождения платины в сульфатных, сульфатно-хлоридных и хлоридных растворах.

 

Растворы
сульфатный сульфатно-хлоридный хлоридный
[Pt2(SO4)4•(H20)2]2- [PtCl4]2- при φа<1.4 В;
[PtCl6]2- при φа>1.4 В.
[PtCl4]2- при φа<1.4 В;
[PtCl6]2- при φа>1.4 В.

 

При содержании в сплавах 0.01-1.0 % платинового металла, он замещает в кристаллической решетке сплава атомы никеля или меди, не образуя самостоятельных структур.

 

Известно, что в присутствии сульфидной, оксидной и металлической фаз платиновые металлы концентрируются в металлической фазе. Поэтому в никелевых и медных промышленных анодах, содержащих в качестве примесей сульфидные и оксидные фазы, платиновые металлы равномерно распределены в металлической фазе, образуя кристаллическую решетку замещения. Это приводит к образованию в решетке сплава микроучастков (зон) с более положительным равновесным потенциалом. Металлы в этих зонах не растворяются при потенциале работающего анода и выпадают в нерастворимый осадок - шлам. В случае повышения потенциала анода до величины, соответствующей потенциалу ионизации платиновых металлов, начинается переход этих металлов в раствор. Степень перехода будет увеличиваться, если в растворе платиновые металлы образуют стойкие комплексные соединения.

Таким образом поведение платиновых металлов при электрохимическом растворении анодов будет определяться потенциалом анода, составом раствора и природой растворяемого сплава.

 

Переработка платинусодержащих шламов.

 

При электролитическом рафинировании меди и никеля платиновые металлы концентрируются в анодных шламах, где их содержание в зависимости от состава исходных руд колеблется в широких пределах, от десятых долей до нескольких процентов.

 

В соответствии с основными теоретическими положениями в шламы при растворении анодов практически без изменения переходят оксиды и сульфиды цветных металлов. Поэтому основными фазовыми составляющими никелевого шлама являются сульфиды меди и никеля (α-Cu2S, β-Cu2S, Ni3S2, NiS), оксиды (NiO, CuO, Fe2O3, Fe3O4), ферриты (NiFe2O4, CuFeO2). Платиновые металлы в шламах представлены рентгеноаморфными металлическими формами.

 

Непосредственная переработка бедных по содержанию благородных металлов продуктов, в состав которых входят значительные количества цветных металлов, железа и серы, на аффинажных предприятиях не производится. Поэтому анодные шламы предварительно обогащают различными пиро- и гидрометаллургическими методами с получением концентратов платиновых металлов. Технологические схемы обогащения шламов, применяемые на различных заводах, различаются между собой.

 

Существующие схемы построены на селективном растворении цветных металлов, содержащихся в шламах. Благородные металлы при этом остаются в нерастворенном осадке, который направляют на аффинажное производство. Раствор, содержащий сульфаты цветных металлов, идет в основное производство. Во многих случаях для улучшения растворения цветных металлов шламы проходят предварительную пирометаллургическую подготовку (обжиг, спекание, восстановительную плавку и т.д.).

 

Переработка шламов методом сульфатизации. Метод основан на том, что сульфиды, оксиды и другие соединения цветных металлов при взаимодействии с концентрированной серной кислотой при температуре выше 150 °С образуют сульфаты, которые при последующем выщелачивании переходят в раствор:

 

MeS+4H2SO4=MeSO4+4H2O+4SO2;

MeO+H2SO4=MeSO4+H2O;

Me+2H2SO4=MeSO4+2H2O+SO2;

Me2S+6H2SO4=2MeSO4+6H2O+5SO2.

 

Благородные металлы должны концентрироваться в нерастворимом остатке. Технологическая схема сульфатизации шлама приведена на рис. 2.

 

Сульфатизационное обогащение шламов

 

Рис. 2. Сульфатизационное обогащение шламов.

 

Согласно схеме, шлам репульпируется в серной кислоте при 60-90°С в течение 4-6 ч. При этом в раствор переходит до 30% никеля и меди. Благородные металлы полностью остаются в твердом остатке, который подвергают сульфатизации в течение 10-12 ч при 250-300°С. Сульфаты цветных металлов и железа выщелачиваются водой, а твердый остаток для удаления кремнекислоты обрабатывают в течение 4 ч 4 М раствором щелочи при 80-90°С. Твердый остаток, содержащий до 30% палладия и платины, направляют на аффинаж. Щелочный раствор после нейтрализации сбрасывают.

Эта схема имеет существенный недостаток - при температуре сульфатизации выше 200°С иридий, родий и рутений более, чем на 95% переходят в раствор.

 

Поэтому предложен способ двойной сульфатизации (рис. 3). Медный и никелевый шламы в принятых пропорциях поступают на первую стадию сульфатизации, проводимую при 180-190°С. Никель, медь, железо более, чем на 99% переходят в раствор. Платиновые металлы практически полностью остаются в нерастворимом остатке. Концентрация платины в растворе не превышает 0.01 мг/л.

 

технологическая схема переработки медных и никелевых шламов

Рис. 3. Принципиальная технологическая схема переработки медных и никелевых шламов методом двойной сульфатизации.

 

***

Комментарии
Нет комментариев.
Добавить комментарий
Пожалуйста, авторизуйтесь для добавления комментария.
Авторизация
Логин

Пароль



Вы не зарегистрированы?
Нажмите здесь для регистрации.

Забыли пароль?
Запросите новый здесь.
Последние комментарии
Новости
Что сказать - как всег...
Погибших уже около 20 ...
При выходе урагана на ...
За несколько часов до ...
Вообще-то Дхаулагири в...
Статьи
Лицензия на убийство ...
Слыхали - бомбят Дрезд...
В 1967 г. на платформе...
Султанат Окуси Амбено ...
В 1948 году житель шта...
Фотогалерея
Вот эти две этикетки с...
Ну - от себя добавлю к...
В 1970 г. Леонард Хасл...
Есть ли в природе люди...
Почему уходящие вдаль ...
Отдельные страницы
У меня такие соседи. С...
Покупка дома важное до...
Понятно, чистота на ку...
Это крайне сложный воп...
Это Володину по карман...
Счетчики

Яндекс.Метрика
- Темы форума
- Комментарии
15,713,320 уникальных посетителей